Lagrangian Subbundles and Codimension 3 Subcanonical Subschemes

نویسندگان

  • DAVID EISENBUD
  • SORIN POPESCU
  • CHARLES WALTER
چکیده

We show that a Gorenstein subcanonical codimension 3 subscheme Z ⊂ X = P , N ≥ 4, can be realized as the locus along which two Lagrangian subbundles of a twisted orthogonal bundle meet degenerately, and conversely. We extend this result to singular Z and all quasiprojective ambient schemes X under the necessary hypothesis that Z is strongly subcanonical in a sense defined below. A central point is that a pair of Lagrangian subbundles can be transformed locally into an alternating map. In the local case our structure theorem reduces to that of Buchsbaum-Eisenbud [6] and says that Z is Pfaffian. We also prove codimension one symmetric and skew-symmetric analogues of our structure theorems. Smooth subvarieties of small codimension Z ⊂ X = PN have been extensively studied in recent years, especially in relation to Hartshorne’s conjecture that a smooth subvariety of sufficiently small codimension in PN is a complete intersection. Although the conjecture remains open, any smooth subvariety Z of small codimension in PN is known, by a theorem of Barth, Larsen, and Lefschetz, to have the weaker property that it is subcanonical in the sense that its canonical class is a multiple of its hyperplane class. More generally, a subscheme Z of a nonsingular Noetherian scheme X is said to be subcanonical if Z is Gorenstein and its canonical bundle is the restriction of a bundle on X. There is a natural generalization to an arbitrary (possibly singular) scheme X (see below). In this paper we give a structure theorem for subcanonical subschemes of codimension 3 in PN and generalize it to subcanonical subschemes of codimension 3 in an arbitrary quasiprojective scheme X satisfying a mild extra cohomological condition (strongly subcanonical subschemes). The construction works even without the quasiprojective hypothesis. There are well known theorems describing the local structure of Gorenstein subschemes of nonsingular Noetherian schemes in codimensions ≤ 3. In codimensions 1 and 2 all Gorenstein subschemes are locally complete intersections. These results have been globalized: If X is nonsingular, any Z ⊂ X of codimension 1 is the zero locus of a section of a line bundle, while a subcanonical Z ⊂ X of codimension 2 is the zero locus of a section of Partial support for the authors during the preparation of this work was provided by the NSF. The authors are also grateful to MSRI Berkeley and the University of Nice Sophia-Antipolis for their hospitality.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enriques Surfaces and other Non-Pfaffian Subcanonical Subschemes of Codimension 3

We give examples of subcanonical subvarieties of codimension 3 in projective n-space which are not Pfaffian, i.e. defined by the ideal sheaf of submaximal Pfaffians of an alternating map of vector bundles. This gives a negative answer to a question asked by Okonek [29]. Walter [36] had previously shown that a very large majority of subcanonical subschemes of codimension 3 in Pn are Pfaffian, bu...

متن کامل

ar X iv : m at h . A G / 9 90 61 71 v 1 2 5 Ju n 19 99 ENRIQUES SURFACES AND OTHER NON

We give examples of subcanonical subvarieties of codimension 3 in projective n-space which are not Pfaffian, i.e. defined by the ideal sheaf of submaximal Pfaffians of an alternating map of vector bundles. This gives a negative answer to a question asked by Okonek [29]. Walter [36] had previously shown that a very large majority of subcanonical subschemes of codimension 3 in P are Pfaffian, but...

متن کامل

Construction of Calabi-yau 3-folds in P 6

We announce here the construction of examples of smooth Calabi-Yau 3-folds in P6 of low degree, up to degree 17. In the last degree their construction is rather complicated, and parametrized by smooth septics in P2 having a a g1 d with d = 13, 12, or 10. This turns out to show the existence of three unirational components of their Hilbert scheme, all having the same dimension 23+ 48 = 71. The c...

متن کامل

ar X iv : a lg - g eo m / 9 60 20 19 v 1 2 7 Fe b 19 96 FORMULAS FOR LAGRANGIAN AND ORTHOGONAL DEGENERACY LOCI ; The Q̃ - Polynomials Approach

Introduction 1. Schubert subschemes and their desingularizations. 2. Isotropic Schubert calculus and the class of the diagonal. 3. Subbundles intersecting an n-subbundle in dim > k. 4. Q̃-polynomials and their properties. 5. Divided differences and isotropic Gysin maps; orthogonality of Q̃-polynomials. 6. Single Schubert condition. 7. Two Schubert conditions. 8. An operator proof of Proposition 3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999